Damon's age [tex] =\tt 12 \frac{3}{4} [/tex]
Dwight's age :
[tex] = \tt1 \frac{1}{2} \: years \: younger \: than \: \: Damon[/tex]
[tex] = \tt12 \frac{3}{4} - 1 \frac{1}{2} [/tex]
[tex] =\tt \frac{51}{4} - \frac{3}{2} [/tex]
▪︎LCM of 4 and 2 = 4
[tex] =\tt \frac{51}{4} - \frac{3 \times 2}{2 \times 2} [/tex]
[tex] =\tt \frac{51}{4} - \frac{6}{4} [/tex]
[tex] = \tt \frac{45}{4} [/tex]
[tex]\color{plum} = \color{plum}\tt11 \frac{1}{4} [/tex]
Thus, Dwight is [tex] \color{plum}\tt11 \frac{1}{4} [/tex] years old.
Jane's age :
[tex] =\tt 1\frac{1}{5} \: years \: younger \: than \: Dwight[/tex]
[tex] = \tt11\frac{1}{4} - 1 \frac{1}{5} [/tex]
[tex] =\tt \frac{45}{4} - \frac{6}{5} [/tex]
▪︎LCM of 4 and 5 = 20
[tex] = \tt\frac{45 \times 5}{4 \times 5} - \frac{6 \times 4}{5 \times 4} [/tex]
[tex] =\tt \frac{225}{20} - \frac{24}{20} [/tex]
[tex] = \tt \frac{201}{20} [/tex]
[tex]\color{plum} =\color{plum} \tt10 \frac{1}{20} [/tex]
Thus, Jane is [tex] \tt10 \frac{1}{20} [/tex] years old.
Therefore, Jane's age = [tex] \color{plum} \tt10 \frac{1}{20} [/tex]