Respuesta :

Answer:

a = 8, b = [tex]\frac{3}{2}[/tex]

Step-by-step explanation:

Given the exponential function

f(x) = a[tex]b^{x}[/tex]

To find a and b use the given coordinate points on the graph

Using (0, 8 ), then

8 = a[tex]b^{0}[/tex] [ [tex]b^{0}[/tex] = 1 ] , then

a = 8

f(x) = 8[tex]b^{x}[/tex]

Using (2, 18 ) , then

18 = 8b² ( divide both sides by 8 )

[tex]\frac{18}{8}[/tex] = b² , that is

b² = [tex]\frac{9}{4}[/tex] ( take the square root of both sides )

b = [tex]\sqrt{\frac{9}{4} }[/tex] = [tex]\frac{3}{2}[/tex]

Thus

f(x) = 8[tex](\frac{3}{2}) ^{x}[/tex]