Let’s look at a radio-controlled model car. Suppose that at time t1=2.0st1=2.0s the car has components of velocity vx=1.0m/svx=1.0m/s and vy=3.0m/svy=3.0m/s and that at time t2=2.5st2=2.5s the components are vx=4.0m/svx=4.0m/s and vy=3.0m/svy=3.0m/s . Find (a) the components of average acceleration and (b) the magnitude and direction of the average acceleration during this interval.

Respuesta :

Answer:

[tex]a_x=6\ \text{m/s}^2[/tex] and [tex]a_y=0\ \text{m/s}^2[/tex]

Magnitude of accleration is [tex]6\ \text{m/s}^2[/tex] and the direction is [tex]0^{\circ}[/tex]

Explanation:

[tex]t_1=2\ \text{s}[/tex]

[tex]v_x=1\ \text{m/s}[/tex]

[tex]v_y=3\ \text{m/s}[/tex]

[tex]t_2=2.5\ \text{s}[/tex]

[tex]v_x=4\ \text{m/s}[/tex]

[tex]v_y=3\ \text{m/s}[/tex]

Average acceleration in the different axes

[tex]a_x=\dfrac{\Delta v_x}{\Delta t}\\\Rightarrow a_x=\dfrac{4-1}{2.5-2}\\\Rightarrow a_x=6\ \text{m/s}^2[/tex]

[tex]a_y=\dfrac{\Delta v_y}{\Delta t}\\\Rightarrow a_y=\dfrac{3-3}{2.5-2}\\\Rightarrow a_y=0\ \text{m/s}^2[/tex]

The components of the acceleration is [tex]a_x=6\ \text{m/s}^2[/tex] and [tex]a_y=0\ \text{m/s}^2[/tex]

The magnitude of acceleration

[tex]a=\sqrt{a_x^2+a_y^2}\\\Rightarrow a=\sqrt{6^2+0^2}\\\Rightarrow a=6\ \text{m/s}^2[/tex]

Direction

[tex]\theta=\tan^{-1}\dfrac{a_y}{a_x}\\\Rightarrow \theta=\tan^{-1}\dfrac{0}{6}\\\Rightarrow \theta=0^{\circ}[/tex]

The magnitude of accleration is [tex]6\ \text{m/s}^2[/tex] and the direction is [tex]0^{\circ}[/tex].