An air heater may be fabricated by coiling Nichrome wire and passing air in cross flow over the wire. Consider a heater fabricated from wire of diameter D=1 mm, electrical resistivity rhoe=10−6Ω⋅m, thermal conductivity k=25W/m⋅K, and emissivity ε=0.20. The heater is designed to deliver air at a temperature of T[infinity]=50∘C under flow conditions that provide a convection coefficient of h=250W/m2⋅K for the wire. The temperature of the housing that encloses the wire and through which the air flows is Tsur=50∘C. If the maximum allowable temperature of the wire is Tmax=1200∘C, what is the maximum allowable electric current I? If the maximum available voltage is ΔE=110V, what is the corresponding length L of wire that may be used in the heater and the power rating of the heater? Hint: In your solution, assume negligible temperature variations within the wire, but after obtaining the desired results, assess the validity of this assumption.

Respuesta :

Solution :

Assuming that the wire has an uniform temperature, the equivalent convective heat transfer coefficient is given as :

[tex]$h_T= \epsilon \sigma (T_s+T_{surr})(T_s^2 +T^2_{surr})$[/tex]

[tex]$h_T= 0.20 \times 5.67 \times 10^{-8} (1473+323)(1473^2 +323^2)$[/tex]

[tex]$h_T=46.3 \ W/m^2 .K$[/tex]

The total heat transfer coefficient will be :

[tex]$h_T=(250+46.3) \ W/m^2 .K$[/tex]

    [tex]$=296.3 \ W/m^2 .K$[/tex]

Now calculating the maximum volumetric heat generation :

[tex]$\dot {q}_{max}=\frac{2h_t}{r_0}(T_s-T_{\infty})$[/tex]

[tex]$\dot {q}_{max}=\frac{2\times 296.3}{0.0005}(1200-50)$[/tex]

        [tex]$= 1.362 \times 10^{9} \ W/m^3$[/tex]

The heat generation inside the wire is given as :

[tex]$\dot{q} = \frac{I^2R}{V}$[/tex]

Here, R is the resistance of the wire

         V is the volume of the wire

∴ [tex]$\dot{q} = \frac{I^2\left( \rho \times \frac{L}{A} \right)}{A \times L}$[/tex]

     [tex]$=\frac{I^2 \rho}{\left(\frac{\pi}{4}D^2 \right)}$[/tex]

where, ρ is the resistivity.

[tex]$I_{max}= \left(\frac{\dot{q}_{max}}{\rho} \right)^{1/2} \times \frac{\pi}{4}D^2$[/tex]

[tex]$I_{max}= \left(\frac{1.36 \times 10^9}{10^{-6}} \right)^{1/2} \times \frac{3.14}{4}(1 \times 10^{-3})^2$[/tex]

        = 28.96 A

Now considering the relation for the current flow through the finite potential difference.

[tex]$E=I_{max} \times R$[/tex]

[tex]$E=I_{max} \times \rho \times \frac{L}{A}$[/tex]

[tex]$L=\frac{AE}{I_{max} \ \rho}$[/tex]

[tex]$L=\frac{\frac{\pi}{4} \times (1 \times 10^{-3})^2 \times 110}{28.96 \times 10^{-6}}$[/tex]

   = 2.983 m

Now calculating the power rating of the heater:

[tex]$P= E \times I_{max}$[/tex]

[tex]$P= 110 \times 28.96}$[/tex]

   = 3185.6 W

   = 3.1856 kW