Respuesta :
Answer:
c). 23.3
Explanation:
Period Demand X Y XY [tex]$X^2$[/tex]
1 11 1 11 11 1
2 13 2 13 26 4
3 15 3 15 45 9
4 17 4 17 68 16
5 16 5 16 80 25
6 18 6 18 108 36
7 20 7 20 140 49
8 19 8 19 152 64
9 23 9 23 207 81
∑ 45 152 837 285
Intercept[tex]$(B_0) = \Sigma Y \times \Sigma X^2 - \Sigma X \times \frac{\Sigma XY}{(N\times \Sigma X^2 - \Sigma X^2)} $[/tex]
Intercept [tex]$= (152\times 285)-\frac{45 \times 837}{(9 \times 285)-45^2}$[/tex]
= 10.47
Slope [tex]$(B_1)= ((N\times \Sigma XY) - (\Sigma X \times \Sigma Y)-(N \times \SIgma X^2 - \Sigma X^2)$[/tex]
Slope [tex]$=((9\times837)-\frac{(45 \times 152)}{(9 \times 285)-45^2} $[/tex]
= 1.28
Therefore, the equation is
Y = intercept + slope(X)
[tex]$Y=10.47 + (1.25 \times X)$[/tex]
For [tex]$X=10$[/tex] forecast [tex]$= 10.47 + (1.28 \times 10)$[/tex]
= 23.27 or 23.3