Respuesta :
Answer:
448
Step-by-step explanation:
[tex](p1)(q1)^2=p2(q2)^2\\p1(2)^2=28(8)^2\\p1=(4)=28(64)\\4p1=1792/4\\p1=448[/tex]
Value of [tex]\boldsymbol{pp}[/tex] is [tex]\boldsymbol{\frac{112}{9}}[/tex]
Inverse Relation
[tex]pp[/tex] is inversely proportional to the square of [tex]qq[/tex]
So,
[tex]\boldsymbol{pp=\frac{(qq)^2}{k}}[/tex] where [tex]k[/tex] is a constant.
Put [tex]pp=28,qq=3[/tex]
[tex]28=\frac{3^2}{k}\\28=\frac{9}{k}[/tex]
[tex]\boldsymbol{k=\frac{9}{28}}[/tex]
So,
[tex]pp=\frac{28}{9}(qq)^2[/tex]
Put [tex]qq=2[/tex]
[tex]pp=\frac{28}{9}(2)^2\\ pp=\frac{112}{9}[/tex]
So, value of [tex]\boldsymbol{pp}[/tex] is [tex]\boldsymbol{\frac{112}{9}}[/tex]
Find out more information about inverse proportion here:
https://brainly.com/question/2548537?referrer=searchResults