If pp is inversely proportional to the square of qq, and pp is 28 when qq is 3, determine pp when qq is equal to 2

Respuesta :

Answer:

448

Step-by-step explanation:

[tex](p1)(q1)^2=p2(q2)^2\\p1(2)^2=28(8)^2\\p1=(4)=28(64)\\4p1=1792/4\\p1=448[/tex]

Value of [tex]\boldsymbol{pp}[/tex] is [tex]\boldsymbol{\frac{112}{9}}[/tex]

Inverse Relation

[tex]pp[/tex] is inversely proportional to the square of [tex]qq[/tex]

So,

[tex]\boldsymbol{pp=\frac{(qq)^2}{k}}[/tex] where [tex]k[/tex] is a constant.

Put [tex]pp=28,qq=3[/tex]

[tex]28=\frac{3^2}{k}\\28=\frac{9}{k}[/tex]

[tex]\boldsymbol{k=\frac{9}{28}}[/tex]

So,

[tex]pp=\frac{28}{9}(qq)^2[/tex]

Put [tex]qq=2[/tex]

[tex]pp=\frac{28}{9}(2)^2\\ pp=\frac{112}{9}[/tex]

So, value of [tex]\boldsymbol{pp}[/tex] is [tex]\boldsymbol{\frac{112}{9}}[/tex]

Find out more information about inverse proportion here:

https://brainly.com/question/2548537?referrer=searchResults