Answer:
See Below
Step-by-step explanation:
Statements: Reasons:
[tex]1)\text{ } \Delta PQR\text{ is equilateral}[/tex] Given
[tex]2)\text{ }PQ=QR=RP[/tex] Definition of Equilateral
[tex]3)\text{ } X, Y, Z\text{ are the midpoints of } PQ, QR, RP[/tex] Given
[tex]4)\text{ } PX=XQ[/tex] Definition of Midpoint
[tex]5)PQ=PX+XQ[/tex] Segment Addition
[tex]6)\text{ } PQ=2XQ[/tex] Substitution
[tex]7)\text{ } QY=YR[/tex] Definition of Midpoint
[tex]8)\text{ }QR=QY+YR[/tex] Segment Addition
[tex]9)\text{ } QR=2QY[/tex] Substitution
[tex]10)\text{ } 2XQ=2QY[/tex] Substitution
[tex]11)\text{ } XQ=QY[/tex] Division Property of Equality
[tex]12)\text{ } XQ=PX=QY=YR[/tex] Transitive Property
[tex]13)\text{ } RZ=ZP[/tex] Definition of Midpoint
[tex]14)\text{ } RP=RZ+ZP[/tex] Segment Addition
[tex]15)\text{ } RP=2RZ[/tex] Substitution
[tex]16)\text{ } 2XQ=2RZ[/tex] Substitution
[tex]17)\text{ } XQ=RZ[/tex] Substitution
[tex]18)\text{ } XQ=PX=QY=YR=RZ=ZP[/tex] Transitive Property
[tex]19)\text{ } \angle Q\cong \angle R\cong \angle P[/tex] Definition of Equilateral
[tex]20)\text{ } \Delta XQY\cong \Delta YRQ \cong \Delta ZPX[/tex] SAS Congruence
[tex]21)\text{ } XY\cong YZ\cong ZX[/tex] CPCTC
[tex]22)\text{ } \Delta XYZ\text{ is equilateral}[/tex] Equilateral Triangle Theorem