Respuesta :

Given:

The equation is

[tex]2\sin x-\sqrt{3}=0[/tex]

When [tex]\dfrac{\pi}{2}\leq x\leq \pi[/tex].

To find:

The value of x.

Solution:

We have,

[tex]2\sin x-\sqrt{3}=0[/tex]

It can be written as

[tex]2\sin x=\sqrt{3}[/tex]

[tex]\sin x=\dfrac{\sqrt{3}}{2}[/tex]

It is given that [tex]\dfrac{\pi}{2}\leq x\leq \pi[/tex].

[tex]\sin x=\sin \left(\pi-\dfrac{\pi}{3}\right)[/tex]

[tex]x=\dfrac{3\pi-\pi}{3}[/tex]

[tex]x=\dfrac{2\pi}{3}[/tex]

Therefore, the value of x is [tex]\dfrac{2\pi}{3}[/tex].