Respuesta :

Given:

The complex number is [tex]i^{34}[/tex].

To find:

The value of given complex number.

Solution:

We have,

[tex]i^{34}[/tex]

It can be written as

[tex]i^{34}=i^{32+2}[/tex]

Using properties of exponents, we get

[tex]i^{34}=i^{32}i^{2}[/tex]            [tex][\because a^{m+n}=a^ma^n][/tex]

[tex]i^{34}=i^{4\times 8}i^{2}[/tex]

[tex]i^{34}=(i^4)^8i^{2}[/tex]            [tex][\because (a^{m})^n=a^{mn}][/tex]

We know that, [tex]i^4=1,i^2=-1[/tex].

[tex]i^{34}=(1)^8(-1)[/tex]

[tex]i^{34}=(1)(-1)[/tex]

[tex]i^{34}=-1[/tex]

The value of [tex]i^{34}[/tex] is -1. Therefore, the correct option is C.