Find the GCF. (questions shown in photo)

Given:
(a) [tex]12a^2b^2c, 15a^3b^3c[/tex]
(b) [tex]2^3\cdot 3^2\cdot 7\cdot 11\text{ and }2^2\cdot 3^3\cdot 5\cdot 7[/tex]
To find:
The GCF.
Solution:
(a)
We have,
[tex]12a^2b^2c, 15a^3b^3c[/tex]
The factor forms are
[tex]12a^2b^2c=2\cdot 2\cdot 3\cdot a\cdot a\cdot b\cdot b\cdot c[/tex]
[tex]15a^3b^3c=3\cdot 5\cdot a\cdot a\cdot a\cdot b\cdot b\cdot b\cdot c[/tex]
Now,
[tex]GCF=3\cdot a\cdot a\cdot b\cdot b\cdot c[/tex]
[tex]GCF=3a^2b^2c[/tex]
Therefore, the GCF is [tex]3a^2b^2c[/tex].
(b)
We have,
[tex]2^3\cdot 3^2\cdot 7\cdot 11\text{ and }2^2\cdot 3^3\cdot 5\cdot 7[/tex]
GCF is the product of common prime factors with least power.
[tex]GCF=2^2\cdot 3^2\cdot 7[/tex]
Therefore, the GCF is [tex]2^2\cdot 3^2\cdot 7[/tex].