Respuesta :

Given:

(a) [tex]12a^2b^2c, 15a^3b^3c[/tex]

(b) [tex]2^3\cdot 3^2\cdot 7\cdot 11\text{ and }2^2\cdot 3^3\cdot 5\cdot 7[/tex]

To find:

The GCF.

Solution:

(a)

We have,

[tex]12a^2b^2c, 15a^3b^3c[/tex]

The factor forms are

[tex]12a^2b^2c=2\cdot 2\cdot 3\cdot a\cdot a\cdot b\cdot b\cdot c[/tex]

[tex]15a^3b^3c=3\cdot 5\cdot a\cdot a\cdot a\cdot b\cdot b\cdot b\cdot c[/tex]

Now,

[tex]GCF=3\cdot a\cdot a\cdot b\cdot b\cdot c[/tex]

[tex]GCF=3a^2b^2c[/tex]

Therefore, the GCF is [tex]3a^2b^2c[/tex].

(b)

We have,

[tex]2^3\cdot 3^2\cdot 7\cdot 11\text{ and }2^2\cdot 3^3\cdot 5\cdot 7[/tex]

GCF is the product of common prime factors with least power.

[tex]GCF=2^2\cdot 3^2\cdot 7[/tex]

Therefore, the GCF is [tex]2^2\cdot 3^2\cdot 7[/tex].