Respuesta :

Answer and Step-by-step explanation:

To simplify algebraic expressions, follow the basic rules:

1. Remove brackets or parentheses by multiplying factors;

2. Use exponent rule to remove grouping, if terms have exponents;

3. Add or subtract like terms;

4. Combine constants;

In the expressions above, there only constants and scientific notations, i.e., exponents elevated on a base 10. So, to simplify, we multiply the numbers and add the exponents:

(4.27 x 10⁸)(9.2 x 10⁻⁵) = 39.28 x 10³

(6.96 x 10⁵)(8.43 x 10⁻²) = 58.67 x 10³

[tex]\frac{(7.25.10^{5})(9.36.10^{-7})}{(7.95.10^{-2})(4.13.10^{-3})}=[/tex] 2.07 x 10³

[tex]\frac{(8.32.10^{4})(9.67.10^{1})}{(7.56.10^{11})(5.79.10^{-8})}[/tex] = 1.84 x 10²

[tex]\frac{(1.89.10^{4})(5.92.10^{3})}{(2.74.10^{-2})(4.67.10^{2})}=[/tex] 0.875 x 10⁷

All the exponents are positive, which means, comma "moves" to the right.

The numbers arranged from least to greatest will be

1.84 x 10² < 2.07 x 10³ < 39.28 x 10³ < 58.67 x 10³ < 0.875 x 10⁷