Answer:
[tex]\displaystyle d = 2\sqrt{10}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Algebra I
Algebra II
- Distance Formula: [tex]\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Step-by-step explanation:
Step 1: Define
Point (-5, -2) → x₁ = -5, y₁ = -2
Point (-3, 4) → x₂ = -3, y₂ = 4
Step 2: Find distance d
Simply plug in the 2 coordinates into the distance formula to find distance d
- Substitute in points [Distance Formula]: [tex]\displaystyle d = \sqrt{(-3+5)^2+(4+2)^2}[/tex]
- [√Radical] (Parenthesis) Add: [tex]\displaystyle d = \sqrt{(2)^2+(6)^2}[/tex]
- [√Radical] Evaluate exponents: [tex]\displaystyle d = \sqrt{4+36}[/tex]
- [√Radical] Add: [tex]\displaystyle d = \sqrt{40}[/tex]
- [√Radical] Simplify: [tex]\displaystyle d = 2\sqrt{10}[/tex]