Respuesta :
Answer:
[tex]\displaystyle \frac{7}{24}[/tex]
General Formulas and Concepts:
Algebra I
- Exponential Rule [Rewrite]: [tex]\displaystyle b^{-m} = \frac{1}{b^m}[/tex]
Calculus
[Area] Limits of Riemann's Sums - Integrals
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Step-by-step explanation:
Step 1: Define
[tex]\displaystyle f(x) = \frac{1}{x^4} \\ \ [1, 2][/tex]
Step 2: Find Area
- [Integral] Set up area: [tex]\displaystyle \int\limits^2_1 {\frac{1}{x^4}} \, dx[/tex]
- [Integral] Rewrite: [tex]\displaystyle \int\limits^2_1 {x^{-4}} \, dx[/tex]
- [Integral] Reverse Power Rule: [tex]\displaystyle \frac{-1}{3x^3} \bigg| \limits^2_1[/tex]
- [Area] Fundamental Theorem of Calculus: [tex]\displaystyle \frac{7}{24}[/tex]
Topic: Calculus
Unit: Basic Integration/Riemann Sums
Book: College Calculus 10e