Answer:
[tex]\displaystyle s(t) = \frac{2t^3}{3} + 16t + 9[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Calculus
Antiderivatives - Integrals
Integration Constant C
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Property [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
Step-by-step explanation:
*Note:
Velocity is the derivative of Position, and Acceleration is derivative of Velocity.
↓
Velocity is integration of Acceleration, Position is integration of Velocity.
Step 1: Define
a(t) = 4t m/s²
s(0) = 9 m
v(0) = 16 m/s
Step 2: Find Velocity Function
Integration Pt. 1
- [Velocity] Set up integral: [tex]\displaystyle v(t) = \int {a(t)} \, dt[/tex]
- [Velocity] Substitute in function: [tex]\displaystyle v(t) = \int {4t} \, dt[/tex]
- [Velocity] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle v(t) = 4\int {t} \, dt[/tex]
- [Velocity] Integrate [Integration Rule - Reverse Power Rule]: [tex]\displaystyle v(t) = 4(\frac{t^2}{2}) + C[/tex]
- [Velocity] Multiply: [tex]\displaystyle v(t) = 2t^2 + C[/tex]
Finding C
- [Velocity] Substitute in initial condition: [tex]\displaystyle v(0) = 2(0)^2 + C[/tex]
- [Velocity] Substitute in function value: [tex]\displaystyle 16 = 2(0)^2 + C[/tex]
- [Velocity] Evaluate exponents: [tex]\displaystyle 16 = 2(0) + C[/tex]
- [Velocity] Multiply: [tex]\displaystyle 16 = C[/tex]
- Rewrite: [tex]\displaystyle C = 16[/tex]
Velocity Function: [tex]\displaystyle v(t) = 2t^2 + 16[/tex]
Step 3: Find Position Function
Integration Pt. 2
- [Position] Set up integral: [tex]\displaystyle s(t) = \int {v(t)} \, dt[/tex]
- [Position] Substitute in function: [tex]\displaystyle s(t) = \int {2t^2 + 16} \, dt[/tex]
- [Position] Rewrite [Integration Property - Addition]: [tex]\displaystyle s(t) = \int {2t^2} \, dt + \int {16} \, dt[/tex]
- [Position] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle s(t) = 2\int {t^2} \, dt + 16\int {} \, dt[/tex]
- [Position] Integrate [Integration Rule - Reverse Power Rule]: [tex]\displaystyle s(t) = 2(\frac{t^3}{3}) + 16t + C[/tex]
- [Position] Multiply: [tex]\displaystyle s(t) = \frac{2t^3}{3} + 16t + C[/tex]
Finding C
- [Position] Substitute in initial condition: [tex]\displaystyle s(0) = \frac{2(0)^3}{3} + 16(0) + C[/tex]
- [Position] Substitute in function value: [tex]\displaystyle 9 = \frac{2(0)^3}{3} + 16(0) + C[/tex]
- [Position] Evaluate exponents: [tex]\displaystyle 9 = \frac{2(0)}{3} + 16(0) + C[/tex]
- [Position] Multiply: [tex]\displaystyle 9 = \frac{0}{3} + C[/tex]
- [Position] Divide: [tex]\displaystyle 9 = C[/tex]
- [Position] Rewrite: [tex]\displaystyle C = 9[/tex]
Position Function: [tex]\displaystyle s(t) = \frac{2t^3}{3} + 16t + 9[/tex]
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Integration
Book: College Calculus 10e