Respuesta :

Answer:

[tex]J' = (-2,-4)[/tex]

Step-by-step explanation:

Given

The attached figure

[tex]J = (-3,-6)[/tex]

[tex]D_{o,\frac{2}{3}}(x,y)[/tex]

Required: Determine J'

The given transformation: [tex]D_{o,\frac{2}{3}}(x,y)[/tex] means that the quadrilateral is dilated by a scale factor or 2/3.

So, J' is calculated as:

[tex]J' = \frac{2}{3} * J[/tex]

[tex]J' = \frac{2}{3} * (-3,-6)[/tex]

[tex]J' = (\frac{2}{3} * -3,\frac{2}{3} * -6)[/tex]

[tex]J' = (2*-1,2*-2)[/tex]

[tex]J' = (-2,-4)[/tex]