Answer:
The required numbers are 30 and 54.
Step-by-step explanation:
Given that one number is 24 more than the other, so
[tex]y = x + 24[/tex]
Given that the sum of the numbers is 84, so
[tex]x + y = 84[/tex]
so we have two equations
[tex]\begin{bmatrix}y=x+24\\ x+y=84\end{bmatrix}[/tex]
Arrange equation variables for elimination
[tex]\begin{bmatrix}y-x=24\\ y+x=84\end{bmatrix}[/tex]
subtracting the equartions
[tex]y+x=84[/tex]
[tex]-[/tex]
[tex]\underline{y-x=24}[/tex]
[tex]2x=60[/tex]
now solve 2x = 60 for x
[tex]2x=60[/tex]
Divide both sides by 2
[tex]\frac{2x}{2}=\frac{60}{2}[/tex]
Simplify
[tex]x=30[/tex]
For y - x = 24 plug in x = 30
[tex]y-30=24[/tex]
Add 30 to both sides
[tex]y-30+30=24+30[/tex]
Simplify
[tex]y=54[/tex]
Thus, the required numbers are 30 and 54.
Verification:
Given that one number is 24 more than the other, so
[tex]y = x + 24[/tex]
substitute x = 30
y = 30 + 24
y = 54
Thus, y is 24 more than x.
Given that the sum of the numbers is 84, so
[tex]x + y = 84[/tex]
sustitute x = 30 and y = 54
30 + 54 = 84
84 = 84
L.H.S = R.H.S
Thus, the sum of the numbers is indeed 84.