Respuesta :

Answer:

The required numbers are 30 and 54.

Step-by-step explanation:

  • Let 'x' be the smaller number
  • Let 'y' be the larger number

Given that one number is 24 more than the other, so

[tex]y = x + 24[/tex]

Given that the sum of the numbers is 84, so

[tex]x + y = 84[/tex]

so we have two equations

[tex]\begin{bmatrix}y=x+24\\ x+y=84\end{bmatrix}[/tex]

Arrange equation variables for elimination

[tex]\begin{bmatrix}y-x=24\\ y+x=84\end{bmatrix}[/tex]

subtracting the equartions

[tex]y+x=84[/tex]

[tex]-[/tex]

[tex]\underline{y-x=24}[/tex]

[tex]2x=60[/tex]

now solve 2x = 60 for x

[tex]2x=60[/tex]

Divide both sides by 2

[tex]\frac{2x}{2}=\frac{60}{2}[/tex]

Simplify

[tex]x=30[/tex]

For y - x = 24 plug in x = 30

[tex]y-30=24[/tex]

Add 30 to both sides

[tex]y-30+30=24+30[/tex]

Simplify

[tex]y=54[/tex]

Thus, the required numbers are 30 and 54.

Verification:

Given that one number is 24 more than the other, so

[tex]y = x + 24[/tex]

substitute x = 30

y = 30 + 24

y = 54

Thus, y is 24 more than x.

Given that the sum of the numbers is 84, so

[tex]x + y = 84[/tex]

sustitute x = 30 and y = 54

30 + 54 = 84

84 = 84

L.H.S = R.H.S

Thus,  the sum of the numbers is indeed 84.