Respuesta :

Answer:

[tex]g_n = 49+ 2n[/tex]

Step-by-step explanation:

Given

[tex]g_1=51[/tex]

[tex]g_n=g_{n-1}+2[/tex]

Required

Determine the explicit formula (missing from the question)

First, calculate g2

[tex]g_n=g_{n-1}+2[/tex]

[tex]g_2 = g_{2-1} +2[/tex]

[tex]g_2 = g_1 +2[/tex]

[tex]g_2 = 51 +2[/tex]

[tex]g_2 = 53[/tex]

So, we have:

[tex]g_1=51[/tex]

[tex]g_2 = 53[/tex]

Calculate the common difference:

[tex]d = g_2 - g_1[/tex]

[tex]d = 53 - 51[/tex]

[tex]d = 2[/tex]

The explicit formula is calculated using:

[tex]g_n = g_1 + (n-1)d[/tex]

This gives:

[tex]g_n = 51 + (n-1)*2[/tex]

[tex]g_n = 51 + 2n-2[/tex]

Collect Like Terms

[tex]g_n = 51 -2+ 2n[/tex]

[tex]g_n = 49+ 2n[/tex]