The perimeter of an equation triangle is 72cm find its area. Leave your answer in radical form 

Answer:
The area of an equilateral triangle is:
[tex]A=144\sqrt{3}[/tex] cm²
Hence, the left bottom option i.e. [tex]144\sqrt{3}[/tex] cm² is the correct option.
Step-by-step explanation:
We know that the perimeter of a triangle is just the sum of its three sides.
Given that the perimeter of an equilateral triangle is 72cm.
i.e. [tex]P = 72[/tex] cm
Important Tip:
Let 'a' be the length of an individual side of an equilateral triangle.
The length of an individual side of an equilateral triangle will be:
[tex]\:a\:=\:\frac{P}{3}\:[/tex]
[tex]a=\:\frac{72}{3}[/tex] ∵ The perimeter [tex]P = 72[/tex]
[tex]a= 24[/tex] cm
Thus,
The length of an individual side of an equilateral triangle: a = 24 cm
The area of an equilateral triangle can be determined using the formula
[tex]A=\frac{\sqrt{3}}{4}a^2[/tex]
where 'a' is the length of an individual side
now substitute a = 24 cm in the formula
[tex]A=\frac{\sqrt{3}}{4}\left(24\right)^2[/tex]
[tex]A=\frac{\sqrt{3}}{4}\left(576\right)[/tex] ∵ 24² = 576
[tex]A=144\sqrt{3}[/tex] cm² ∵ [tex]\:\frac{576}{4}=144[/tex]
Therefore, the area of an equilateral triangle is:
[tex]A=144\sqrt{3}[/tex] cm²
Hence, the left bottom option i.e. [tex]144\sqrt{3}[/tex] cm² is the correct option.