Respuesta :

Answer:

[tex]EF = 13[/tex]

[tex]GH = 5[/tex]

[tex]EH = 13[/tex]

Step-by-step explanation:

Given

The attached figure

[tex]EG = 12[/tex]

[tex]FG = 5[/tex]

Solving (a): EF

Since m is a perpendicular bisector, then <EGF and <EGH are right-angled.

So, EF will be calculated using Pythagoras theorem which states:

[tex]EF^2 = EG^2 + FG^2[/tex]

[tex]EF^2 = 12^2 + 5^2[/tex]

[tex]EF^2 = 144 + 25[/tex]

[tex]EF^2 = 169[/tex]

Take the positive square roots of both sides

[tex]EF = \sqrt{169[/tex]

[tex]EF = 13[/tex]

Solving (b): GH

Since m is a perpendicular bisector, then GH = FG

[tex]FG = 5[/tex]

[tex]GH = FG[/tex]

[tex]GH = 5[/tex]

Solving (c): EH

Since m is a perpendicular bisector, then EH = EF

[tex]EF = 13[/tex]

[tex]EH = EF[/tex]

[tex]EH = 13[/tex]