Respuesta :

Answer:

[tex]\frac{49}{9}[/tex]

Step-by-step explanation:

Given

[tex](\frac{-3}{7})^{2!}[/tex]

Required

Determine the reciprocal

If a number is x, the reciprocal is: 1/x

So, the reciprocal of [tex](\frac{-3}{7})^{2!}[/tex] is:

[tex]\frac{1}{(\frac{-3}{7})^{2!}}[/tex]

[tex]2! = 2*1 =2[/tex]

So, we have:

[tex]\frac{1}{(\frac{-3}{7})^{2}}[/tex]

[tex]\frac{1}{(\frac{-3^{2}}{7^{2}})}[/tex]

Evaluate all exponents

[tex]\frac{1}{(\frac{9}{49})}[/tex]

Take inverse of 9/49

[tex]\frac{49}{9}[/tex]

Hence, the reciprocal of [tex](\frac{-3}{7})^{2!}[/tex] is [tex]\frac{49}{9}[/tex]