Respuesta :

Answer:

x = 4[tex]\sqrt{3}[/tex]

y = 8[tex]\sqrt{3}[/tex]

Step-by-step explanation:

this is a 30-60-90 triangle and the sides have a constant ratio

the side across from the 30°∡ is 1

the side across from the 60°∡ is √3

the side across from the 90°∡ is 2

In this problem we can find 'x' by setting up this proportion:

x/12 = [tex]\sqrt{3}[/tex]/1

cross-multiply:

[tex]\sqrt{3}[/tex]x = 12

x = 12/[tex]\sqrt{3}[/tex]

since we don't like to leave radicals in the denominator, we can multiply both numerator and denominator by [tex]\sqrt{3}[/tex] to get:

12[tex]\sqrt{3}[/tex] ÷ [tex]\sqrt{3}[/tex]·[tex]\sqrt{3}[/tex]    ([tex]\sqrt{3}[/tex]·[tex]\sqrt{3}[/tex] = [tex]\sqrt{9}[/tex], which equals 3)

so we have 12[tex]\sqrt{3}[/tex]/3, which is 4[tex]\sqrt{3}[/tex]

The 'y' value will be twice the 30° side, so 8[tex]\sqrt{3}[/tex]