Respuesta :

Space

Answer:

[tex]\displaystyle d = 2\sqrt{13}[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Coordinates (x, y)

Algebra II

  • Distance Formula: [tex]\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Step-by-step explanation:

Step 1: Define

Point (11, 4) → x₁ = 11, y₁ = 4

Point (5, 8) → x₂ = 5, y₂ = 8

Step 2: Find distance d

Simply plug in the 2 coordinates into the distance formula to find distance d

  1. Substitute in points [Distance Formula]:                                                       [tex]\displaystyle d = \sqrt{(5-11)^2+(8-4)^2}[/tex]
  2. [√Radical] (Parenthesis) Subtract:                                                                 [tex]\displaystyle d = \sqrt{(-6)^2+(4)^2}[/tex]
  3. [√Radical] Evaluate exponents:                                                                    [tex]\displaystyle d = \sqrt{36+16}[/tex]
  4. [√Radical] Add:                                                                                               [tex]\displaystyle d = \sqrt{52}[/tex]
  5. [√Radical] Simplify:                                                                                         [tex]\displaystyle d = 2\sqrt{13}[/tex]