Answer:
[tex]\displaystyle d = 2\sqrt{13}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Algebra I
Algebra II
- Distance Formula: [tex]\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Step-by-step explanation:
Step 1: Define
Point (11, 4) → x₁ = 11, y₁ = 4
Point (5, 8) → x₂ = 5, y₂ = 8
Step 2: Find distance d
Simply plug in the 2 coordinates into the distance formula to find distance d
- Substitute in points [Distance Formula]: [tex]\displaystyle d = \sqrt{(5-11)^2+(8-4)^2}[/tex]
- [√Radical] (Parenthesis) Subtract: [tex]\displaystyle d = \sqrt{(-6)^2+(4)^2}[/tex]
- [√Radical] Evaluate exponents: [tex]\displaystyle d = \sqrt{36+16}[/tex]
- [√Radical] Add: [tex]\displaystyle d = \sqrt{52}[/tex]
- [√Radical] Simplify: [tex]\displaystyle d = 2\sqrt{13}[/tex]