Respuesta :

Answer:

m(arc ZWY) = 305°

Step-by-step explanation:

8). Formula for the angle formed outside the circle by the intersection of two tangents or two secants is,

Angle formed by two tangents = [tex]\frac{1}{2}(\text{Difference of intercepted arcs})[/tex]

                                                   = [tex]\frac{1}{2}(220-140)[/tex]

                                                   = [tex]\frac{1}{2}(80)[/tex]

                                                   = 40°

9). Following the same rule as above,

Angle formed between two tangents = [tex]\frac{1}{2}(\text{Difference of intercepted arcs})[/tex]

125 = [tex]\frac{1}{2}[m(\text{major arc})-m(\text{minor arc})][/tex]

250 = [tex][m(\text{arc ZWY})-m(\text{arc ZY})][/tex]

250 = m(arc ZWY) - 55

m(arc ZWY) = 305°

Therefore, measure of arc ZWY = 305° will be the answer.

10). m(arc BAC) = [tex]\frac{1}{2}([m(\text{arc BDC})-m(\text{arc BC})])[/tex]

                          = [tex]\frac{1}{2}(254-106)[/tex]

                          = [tex]\frac{148}{2}[/tex]

                          = 74°