For questions 8 – 10, answer the questions about tangent-tangent angles.

Answer:
m(arc ZWY) = 305°
Step-by-step explanation:
8). Formula for the angle formed outside the circle by the intersection of two tangents or two secants is,
Angle formed by two tangents = [tex]\frac{1}{2}(\text{Difference of intercepted arcs})[/tex]
= [tex]\frac{1}{2}(220-140)[/tex]
= [tex]\frac{1}{2}(80)[/tex]
= 40°
9). Following the same rule as above,
Angle formed between two tangents = [tex]\frac{1}{2}(\text{Difference of intercepted arcs})[/tex]
125 = [tex]\frac{1}{2}[m(\text{major arc})-m(\text{minor arc})][/tex]
250 = [tex][m(\text{arc ZWY})-m(\text{arc ZY})][/tex]
250 = m(arc ZWY) - 55
m(arc ZWY) = 305°
Therefore, measure of arc ZWY = 305° will be the answer.
10). m(arc BAC) = [tex]\frac{1}{2}([m(\text{arc BDC})-m(\text{arc BC})])[/tex]
= [tex]\frac{1}{2}(254-106)[/tex]
= [tex]\frac{148}{2}[/tex]
= 74°