Answer:
The solution to the equation system given is:
Step-by-step explanation:
First, we must know the equations given:
Following Crammer's Rule, we have the matrix form:
[tex]\left[\begin{array}{ccc}2&3\\3&1\end{array}\right] =\left[\begin{array}{ccc}x\\y\end{array}\right] = \left[\begin{array}{ccc}1\\5\end{array}\right][/tex]
Now we solve using the determinants:
[tex]x=\frac{\left[\begin{array}{ccc}1&3\\5&1\end{array}\right]}{\left[\begin{array}{ccc}2&3\\3&1\end{array}\right] } =\frac{(1*1)-(5*3)}{(2*1)-(3*3)} = \frac{1-15}{2-9} =\frac{-14}{-7} = 2[/tex]
[tex]y=\frac{\left[\begin{array}{ccc}2&1\\3&5\end{array}\right]}{\left[\begin{array}{ccc}2&3\\3&1\end{array}\right] } =\frac{(2*5)-(3*1)}{(2*1)-(3*3)}=\frac{10-3}{2-9} =\frac{7}{-7}=-1[/tex]
Now, we can find the answer which is x= 2 and y= -1, we can replace these values in the equation to confirm the results are right, with the first equation:
And, with the second equation: