Respuesta :

Answer:

The solution to the equation system given is:

  • x = 2
  • y = -1

Step-by-step explanation:

First, we must know the equations given:

  1. 2x + 3y = 1
  2. 3x + y = 5​

Following Crammer's Rule, we have the matrix form:

[tex]\left[\begin{array}{ccc}2&3\\3&1\end{array}\right] =\left[\begin{array}{ccc}x\\y\end{array}\right] = \left[\begin{array}{ccc}1\\5\end{array}\right][/tex]

Now we solve using the determinants:

[tex]x=\frac{\left[\begin{array}{ccc}1&3\\5&1\end{array}\right]}{\left[\begin{array}{ccc}2&3\\3&1\end{array}\right] } =\frac{(1*1)-(5*3)}{(2*1)-(3*3)} = \frac{1-15}{2-9} =\frac{-14}{-7} = 2[/tex]

[tex]y=\frac{\left[\begin{array}{ccc}2&1\\3&5\end{array}\right]}{\left[\begin{array}{ccc}2&3\\3&1\end{array}\right] } =\frac{(2*5)-(3*1)}{(2*1)-(3*3)}=\frac{10-3}{2-9} =\frac{7}{-7}=-1[/tex]

Now, we can find the answer which is x= 2 and y= -1, we can replace these values in the equation to confirm the results are right, with the first equation:

  • 2x + 3y = 1
  • 2(2) + 3(-1)= 1
  • 4 - 3 = 1
  • 1 = 1

And, with the second equation:

  • 3x + y = 5​
  • 3(2) + (-1) = 5
  • 6 - 1 = 5
  • 5 = 5