Respuesta :

Answer:

The solutions to the quadratic function are:

[tex]x=i\sqrt{\frac{1}{2}}+\frac{1}{2},\:x=-i\sqrt{\frac{1}{2}}+\frac{1}{2}[/tex]

Step-by-step explanation:

Given the function

[tex]f\left(x\right)\:=\:4x^2\:-\:4x\:+\:3[/tex]

Let us determine all possible solutions for f(x) = 0

[tex]0=4x^2-4x+3[/tex]

switch both sides

[tex]4x^2-4x+3=0[/tex]

subtract 3 from both sides

[tex]4x^2-4x+3-3=0-3[/tex]

simplify

[tex]4x^2-4x=-3[/tex]

Divide both sides by 4

[tex]\frac{4x^2-4x}{4}=\frac{-3}{4}[/tex]

[tex]x^2-x=-\frac{3}{4}[/tex]

Add (-1/2)² to both sides

[tex]x^2-x+\left(-\frac{1}{2}\right)^2=-\frac{3}{4}+\left(-\frac{1}{2}\right)^2[/tex]

[tex]x^2-x+\left(-\frac{1}{2}\right)^2=-\frac{1}{2}[/tex]

[tex]\left(x-\frac{1}{2}\right)^2=-\frac{1}{2}[/tex]

[tex]\mathrm{For\:}f^2\left(x\right)=a\mathrm{\:the\:solutions\:are\:}f\left(x\right)=\sqrt{a},\:-\sqrt{a}[/tex]

solving

[tex]x-\frac{1}{2}=\sqrt{-\frac{1}{2}}[/tex]

[tex]x-\frac{1}{2}=\sqrt{-1}\sqrt{\frac{1}{2}}[/tex]                 ∵ [tex]\sqrt{-\frac{1}{2}}=\sqrt{-1}\sqrt{\frac{1}{2}}[/tex]

as

[tex]\sqrt{-1}=i[/tex]

so

[tex]x-\frac{1}{2}=i\sqrt{\frac{1}{2}}[/tex]

Add 1/2 to both sides

[tex]x-\frac{1}{2}+\frac{1}{2}=i\sqrt{\frac{1}{2}}+\frac{1}{2}[/tex]

[tex]x=i\sqrt{\frac{1}{2}}+\frac{1}{2}[/tex]

also solving

[tex]x-\frac{1}{2}=-\sqrt{-\frac{1}{2}}[/tex]

[tex]x-\frac{1}{2}=-i\sqrt{\frac{1}{2}}[/tex]

Add 1/2 to both sides

[tex]x-\frac{1}{2}+\frac{1}{2}=-i\sqrt{\frac{1}{2}}+\frac{1}{2}[/tex]

[tex]x=-i\sqrt{\frac{1}{2}}+\frac{1}{2}[/tex]

Therefore, the solutions to the quadratic function are:

[tex]x=i\sqrt{\frac{1}{2}}+\frac{1}{2},\:x=-i\sqrt{\frac{1}{2}}+\frac{1}{2}[/tex]