Respuesta :

Answer:

The equivalent expressions are:

[tex]4\left(4a+5\right)=16a+20[/tex]

                [tex]=2\left(8a+10\right)[/tex]

                [tex]=12a+20+4a[/tex]  

Yes, 16a+20 could be further reduced by taking 2 as a common factor.

i.e. 16a+20 = 2(8a+10)

Step-by-step explanation:

Given the expression

  • [tex]4(4a+5)[/tex]

solving the expression to determine the equivalent expression

[tex]4\left(4a+5\right)[/tex]

[tex]\mathrm{Apply\:the\:distributive\:law}:\quad \:a\left(b+c\right)=ab+ac[/tex]

[tex]4\left(4a+5\right)=4\cdot \:\:4a+4\cdot \:\:5[/tex]

                [tex]=16a+20[/tex]

Taking 2 as the common factor

                [tex]=2\left(8a+10\right)[/tex]

Also

[tex]12a+20+4a = 16a+20[/tex]  

             

Therefore, the equivalent expressions are:

[tex]4\left(4a+5\right)=16a+20[/tex]

                [tex]=2\left(8a+10\right)[/tex]

                [tex]=12a+20+4a[/tex]  

Yes, 16a+20 could be further reduced by taking 2 as a common factor.

i.e. 16a+20 = 2(8a+10)