Respuesta :

Answer:

The value of n:

  • [tex]n=\frac{22}{3}[/tex]

Step-by-step explanation:

Given that the line has slope 6.

i.e. m = 6

The line includes the points

  • (n, 1)
  • (8, 5)

Using the formula to find the slope of the points

[tex]\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(n,\:1\right),\:\left(x_2,\:y_2\right)=\left(8,\:5\right)[/tex]

[tex]m=\frac{4}{8-n}[/tex]

as

m = 6

substituting m = 6

[tex]6=\frac{4}{8-n}[/tex]

[tex]6\left(8-n\right)=4[/tex]

Divide both sides by 6

[tex]\frac{6\left(8-n\right)}{6}=\frac{4}{6}[/tex]

[tex]8-n=\frac{2}{3}[/tex]

subtract 8 from both sides

[tex]8-n-8=\frac{2}{3}-8[/tex]

simplify

[tex]-n=-\frac{22}{3}[/tex]

Divide both sides by -1

[tex]\frac{-n}{-1}=\frac{-\frac{22}{3}}{-1}[/tex]

[tex]n=\frac{22}{3}[/tex]

Therefore, the value of n:

  • [tex]n=\frac{22}{3}[/tex]

Otras preguntas