Respuesta :

Answer:

EH = 9.4

Step-by-step explanation:

A rhombus is a quadrilateral with equal length of sides.

Given that,  EF = 13 and DF = 18

⇒ DH = HF = [tex]\frac{18}{2}[/tex]

             = 9

The property that the diagonals of a rhombus are at right angle to each other.

Thus, applying the Pythagoras theorem, we have;

[tex]/hyp/^{2}[/tex] = [tex]/adj1/^{2}[/tex] + [tex]/adj2/^{2}[/tex]

[tex](EF)^{2}[/tex] = [tex](EH)^{2}[/tex] + [tex](HF)^{2}[/tex]

[tex](13)^{2}[/tex] = [tex](EH)^{2}[/tex] + [tex](9)^{2}[/tex]

169 =  [tex](EH)^{2}[/tex] + 81

[tex](EH)^{2}[/tex] = 169 - 81

           = 88

EH = [tex]\sqrt{88}[/tex]

      = 9.381

The length EH is 9.4