Respuesta :

Answer:

Option C

Step-by-step explanation:

From the graph attached,

Slope of the line passing through two points A and B will be,

m = [tex]\frac{\text{Rise}}{\text{Run}}[/tex]

   = [tex]\frac{12}{8}[/tex]

   = [tex]\frac{3}{2}[/tex]

Triangles having same ratio of Height and base (slope) will lie on the line graphed.

Option A

Slope pf the triangle  = [tex]\frac{44}{21}[/tex]

[tex]\frac{3}{2}\neq \frac{44}{21}[/tex]

Slope of the line ≠ Slope of the triangle

Therefore, triangle will not lie on the line.

Option B

Slope of the triangle = [tex]\frac{36}{12}=\frac{3}{1}[/tex]

[tex]\frac{3}{2}\neq \frac{3}{1}[/tex]

Triangle will not lie on the line.

Option C

Slope of the triangle = [tex]\frac{30}{20}= \frac{3}{2}[/tex]

Since, slope of the line = slope of the triangle

[tex]\frac{3}{2}= \frac{3}{2}[/tex]

Triangle will lie on the line.

Option D

Slope of the triangle = [tex]\frac{52}{26}=\frac{2}{1}[/tex]

But [tex]\frac{3}{2}\neq \frac{2}{1}[/tex]

Therefore, triangle will not lie on the given line.

Ver imagen eudora