HURRY WILL GIVE BRAINLIEST

Given: ABCD is a parallelogram.
Prove: AB CD and BC DA
Angles Segments Triangles Statements Reasons

Please make the answer clear

HURRY WILL GIVE BRAINLIEST Given ABCD is a parallelogram Prove AB CD and BC DA Angles Segments Triangles Statements Reasons Please make the answer clear class=

Respuesta :

Drawing the diagonal [tex]\overline {AC}[/tex] of the parallelogram makes the proof of the

congruency of opposite sides of a parallelogram clearer.

[tex]\overline {AB}[/tex] ≅ [tex]\overline {CD}[/tex] and [tex]\overline {BC}[/tex] ≅ [tex]\overline {DA}[/tex] by ASA rule of congruency

Reasons:

The two column proof is presented as follows;

Statement [tex]{}[/tex]                                 Reasons

ABCD is a parallelogram  [tex]{}[/tex]        Given

∠BAC ≅ ∠DCA  [tex]{}[/tex]                        Alternate interior angles theorem

∠BCA ≅ ∠DAC  [tex]{}[/tex]                        Alternate interior angles theorem

[tex]\overline {AC}[/tex] ≅ [tex]\overline {AC}[/tex]   [tex]{}[/tex]                                 Reflexive property

ΔABC ≅ ΔACD    [tex]{}[/tex]                       ASA rule of congruency

[tex]\overline {AB}[/tex] ≅ [tex]\overline {CD}[/tex]   [tex]{}[/tex]                                 CPCTC

[tex]\overline {BC}[/tex] ≅ [tex]\overline {DA}[/tex]   [tex]{}[/tex]                                 CPCTC

Therefore, segment [tex]\overline {AB}[/tex] and segment [tex]\overline {CB}[/tex]  in ΔABC are congruent to

segment [tex]\overline {CD}[/tex] and segment [tex]\overline {DA}[/tex] in ΔACD by Angle-Side-Angle, ASA, rule of

congruency.

CPCTC stands for Congruent Part of Congruent Triangle are Congruent

Learn more here:

Ver imagen oeerivona