Respuesta :

Given:

In rectangle ABCD, diagonals AC and BD intersect at E, AE=3x-28 and DE=.5x+12.

To find:

The length of AC.

Solution:

We know that, diagonals of a rectangle are equal and they bisect each other.

In rectangle ABCD, diagonals AC and BD intersect at E, so

[tex]AE=BE=CE=DE[/tex]          ...(i)

Taking [tex]AE=DE[/tex], we get

[tex]3x-28=0.5x+12[/tex]

[tex]3x-0.5x=28+12[/tex]

[tex]2.5x=40[/tex]

Divide both sides by 2.5.

[tex]x=\dfrac{40}{2.5}[/tex]

[tex]x=16[/tex]

Now,

[tex]AE=3x-28[/tex]

[tex]AE=3(16)-28[/tex]

[tex]AE=48-28[/tex]

[tex]AE=20[/tex]

Using segment addition property,

[tex]AC=AE+CE[/tex]

[tex]AC=AE+AE[/tex]         [Using (i)]

[tex]AC=20+20[/tex]

[tex]AC=40[/tex]

Therefore, the length of AC is 40 units.