Respuesta :

Answer:

m<B = 28°

[tex] AB = 19.2 [/tex]

[tex] AC = 27.6 [/tex]

Step-by-step explanation:

Given:

m<A = 112°

m<C = 40°

AC = 14

Required:

Find, m<B, AB and BC.

SOLUTION:

✍️m<B = 180° - (112° + 40°) (sum of ∆)

m<B = 28°

✍️Using sine rule, find AB.

[tex] \frac{AB}{sin(C)} = \frac{AC}{sin(B)} [/tex]

Plug in the values into the equation.

[tex] \frac{AB}{sin(40)} = \frac{14}{sin(28)} [/tex]

Cross multiply

[tex] AB*sin(28) = 14*sin(40) [/tex]

Divide both sides by sin(28)

[tex] AB = \frac{14*sin(40)}{sin(28)} [/tex]

[tex] AB = 19.2 [/tex] (nearest tenth)

✍️Using sine rule, find BC.

[tex] \frac{BC}{sin(A)} = \frac{AC}{sin(B)} [/tex]

Plug in the values into the equation.

[tex] \frac{BC}{sin(112)} = \frac{14}{sin(28)} [/tex]

Cross multiply

[tex] AC*sin(28) = 14*sin(112) [/tex]

Divide both sides by sin(28)

[tex] AC = \frac{14*sin(112)}{sin(28)} [/tex]

[tex] AC = 27.6 [/tex] (nearest tenth)