Respuesta :

Answer:

-0.04

Step-by-step explanation:

tan([tex]\frac{5}{7}[/tex] - π) = -0.04

Given:

[tex]\text{tan}(t)=\frac{5}{7}[/tex]

To find:

Value of [tex]\text{tan}(t-\pi )[/tex]

Solution:

To solve the given expression we will use the identity,

[tex]\text{tan}(A-B)=\frac{\text{tan}A-\text{tan}B}{1+\text{tan}A\text{tan}B}[/tex]

Now substitute the values,

[tex]A=t[/tex]

[tex]B=\pi[/tex]

[tex]\text{tan}(t-\pi)=\frac{\text{tan}t-\text{tan}\pi }{1+\text{tan}t\text{tan}\pi }[/tex]

Since, the value of [tex]\text{tan}(\pi )[/tex] is [tex]0[/tex].

[tex]\text{tan}(t-\pi)=\frac{\text{tan}t-0}{1+\text{tan}t\times (0)}[/tex]

                [tex]=\frac{\text{tan}t}{1}[/tex]

                [tex]=\text{tan}t[/tex]

Therefore, [tex]\text{tan}(t-\pi)=\frac{5}{7}[/tex] will be the answer.

Learn more from,

https://brainly.com/question/19859527