Which of the following pairs of lines are perpendicular? Select all that apply.

Answer:
y = [tex]\frac{4}{5} x[/tex] - 8
y = -[tex]\frac{5x}{4}[/tex] + 3
y = [tex]\frac{2}{3} x[/tex] - 8
y = [tex]\frac{-3}{2}x - 8[/tex]
Step-by-step explanation:
To know the pairs that are perpendicular lines, we need to understand what makes a line perpendicular to another.
Perpendicular lines generally have slopes;
m and [tex]-\frac{1}{m}[/tex]
So, any of the pairs with a negative inverse value of slope will be perpendicular.
y = [tex]\frac{4}{5} x[/tex] - 8 slope = [tex]\frac{4}{5}[/tex]
y = [tex]-\frac{5x}{4} + 3[/tex] slope = [tex]-\frac{5}{4}[/tex]
We see they are negative inverses
y = [tex]\frac{2}{3} x[/tex] - 8 slope = [tex]\frac{2}{3}[/tex]
y = [tex]\frac{-3}{2}x - 8[/tex] slope = [tex]-\frac{3}{2}[/tex]
These are also negative inverses.