Respuesta :

Given:

[tex]f(x)=3(x-5)+8[/tex]

To find:

The inverse [tex]f^{-1}(x)[/tex] of given function

Solution:

We have,

[tex]f(x)=3(x-5)+8[/tex]

[tex]f(x)=3x-15+8[/tex]

[tex]f(x)=3x-7[/tex]

Put f(x)=y.

[tex]y=3x-7[/tex]

Interchange x and y.

[tex]x=3y-7[/tex]

Isolate y on one side.

[tex]x+7=3y[/tex]

[tex]\dfrac{x+7}{3}=y[/tex]

[tex]y=\dfrac{x+7}{3}[/tex]

Put [tex]y=f^{-1}(x)[/tex].

[tex]f^{-1}(x)=\dfrac{x+7}{3}[/tex]

Therefore, the required inverse function is [tex]f^{-1}(x)=\dfrac{x+7}{3}[/tex].

The inverse function of f(x) is [tex]f^{-1}(x) = 5 + \frac{x - 8}{3}[/tex]

The function is given as:

[tex]f(x) = 3(x - 5) + 8[/tex]

Replace f(x) with y

[tex]y = 3(x - 5) + 8[/tex]

Swap the positions of x and y

[tex]x = 3(y - 5) + 8[/tex]

Subtract 8 from both sides

[tex]x - 8= 3(y - 5)[/tex]

Divide both sides by 3

[tex]\frac{x - 8}{3} = y - 5[/tex]

Add 5 to both sides

[tex]5 + \frac{x - 8}{3} = y[/tex]

Rewrite as:

[tex]y = 5 + \frac{x - 8}{3}[/tex]

Replace y with the inverse function

[tex]f^{-1}(x) = 5 + \frac{x - 8}{3}[/tex]

Hence, the inverse function of f(x) is [tex]f^{-1}(x) = 5 + \frac{x - 8}{3}[/tex]

Read more about inverse functions at:

https://brainly.com/question/14391067