Respuesta :

Answer:

[tex]a=\frac{m}{z-b}[/tex]

Step-by-step explanation:

rewrite the equation so that [tex]a[/tex] is on the left:

[tex]b+\frac{m}{a} =z[/tex]

subtract [tex]b[/tex] from both sides:

[tex]\frac{m}{a}=z-b[/tex]

multiply each term by [tex]a[/tex]:

[tex]\frac{m}{a} (a)=z(a)-b(a)[/tex]

[tex]m=za-ba[/tex]

rewrite again so that [tex]a[/tex] is on the left again:

[tex]za-ba=m[/tex]

factor

[tex]az-ba=m[/tex]

[tex]a(z-b)=m[/tex]

divide each term by [tex]z-b[/tex] and simplify

[tex]\frac{a(z-b)}{z-b} =\frac{m}{z-b}[/tex]

[tex]a=\frac{m}{z-b}[/tex]

Answer:

[tex]\boxed{\bold{a \ = \ \frac{m}{-b \ + \ z} }}[/tex]

Explanation:

Solve for a: z = b + m / a

[ Step 1: Multiply both sides by a ]

az = ab + m

[ Step 2: Add -ab to both sides ]

az + −ab = ab + m + −ab

−ab + az = m

[ Step 3: Factor out variable a ]

a(−b + z) = m

[ Step 4: Divide both sides by -b + z ]

a(-b + z) / -b + z = m / -b + z

a = m / -b + z