Respuesta :
Answer:
[tex]a=\frac{m}{z-b}[/tex]
Step-by-step explanation:
rewrite the equation so that [tex]a[/tex] is on the left:
[tex]b+\frac{m}{a} =z[/tex]
subtract [tex]b[/tex] from both sides:
[tex]\frac{m}{a}=z-b[/tex]
multiply each term by [tex]a[/tex]:
[tex]\frac{m}{a} (a)=z(a)-b(a)[/tex]
[tex]m=za-ba[/tex]
rewrite again so that [tex]a[/tex] is on the left again:
[tex]za-ba=m[/tex]
factor
[tex]az-ba=m[/tex]
[tex]a(z-b)=m[/tex]
divide each term by [tex]z-b[/tex] and simplify
[tex]\frac{a(z-b)}{z-b} =\frac{m}{z-b}[/tex]
[tex]a=\frac{m}{z-b}[/tex]
Answer:
[tex]\boxed{\bold{a \ = \ \frac{m}{-b \ + \ z} }}[/tex]
Explanation:
Solve for a: z = b + m / a
[ Step 1: Multiply both sides by a ]
az = ab + m
[ Step 2: Add -ab to both sides ]
az + −ab = ab + m + −ab
−ab + az = m
[ Step 3: Factor out variable a ]
a(−b + z) = m
[ Step 4: Divide both sides by -b + z ]
a(-b + z) / -b + z = m / -b + z
a = m / -b + z