Using the midpoint and the distance formulas, calculate he coordinate of the midpoint and the length of the segment.

Length of the segment CD: _________ Coordinates of Midpoint.

A. 8
B. (3.5, 3)
C. (3, 2)
D. 2
E. /5

Using the midpoint and the distance formulas calculate he coordinate of the midpoint and the length of the segment Length of the segment CD Coordinates of Midpo class=

Respuesta :

Answer:

Explanation:

Formula to calculate the distance between two points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] is,

d = [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Therefore, length of CD having coordinates C(3,1) and D(3, 3),

CD = [tex]\sqrt{(3-3)^2+(1-3)^2}[/tex]

     = 2 units

Formula to find the midpoint of CD is,

M = [tex](\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

   = [tex](\frac{3+3}{2},\frac{1+3}{2})[/tex]

   = (3, 2)

Therefore, length of CD = 2 units and (3, 2) are the coordinates of the midpoint of CD.