Answer:
270 mi/h
Explanation:
Given that,
To the south,
v₁ = 300 mi/h, t₁ = 2 h
We can find distance, d₁
[tex]d_1=v_1\times t_1\\\\d_1=300\times 2\\\\d_1=600\ \text{miles}[/tex]
To the north,
v₂ = 250 mi/h, d₂ = 750 miles
We can find time, t₂
[tex]t_2=\dfrac{d_2}{v_2}\\\\t_2=\dfrac{750\ \text{miles}}{250\ \text{mi/h}}\\\\t_2=3\ h[/tex]
Now,
Average speed = total distance/total time
[tex]V=\dfrac{d_1+d_2}{t_1+t_2}\\\\V=\dfrac{600+750}{2+3}\\\\V=270\ \text{mi/h}[/tex]
Hence, the average speed for the trip is 270 mi/h.