An airplane travels at 300 mi/h south for 2.00 h and then at 250 mi/h north for 750 miles. What is the average speed for the trip? Group of answer choices

Respuesta :

Answer:

270 mi/h

Explanation:

Given that,

To the south,

v₁ = 300 mi/h, t₁ = 2 h

We can find distance, d₁

[tex]d_1=v_1\times t_1\\\\d_1=300\times 2\\\\d_1=600\ \text{miles}[/tex]

To the north,

v₂ = 250 mi/h, d₂ = 750 miles

We can find time, t₂

[tex]t_2=\dfrac{d_2}{v_2}\\\\t_2=\dfrac{750\ \text{miles}}{250\ \text{mi/h}}\\\\t_2=3\ h[/tex]

Now,

Average speed = total distance/total time

[tex]V=\dfrac{d_1+d_2}{t_1+t_2}\\\\V=\dfrac{600+750}{2+3}\\\\V=270\ \text{mi/h}[/tex]

Hence, the average speed for the trip is 270 mi/h.