Newton's law of cooling states that d x d t = − k ( x − A ) where x is the temperature, t is time, A is the ambient temperature, and k > 0 is a constant. Suppose that A = A 0 cos ( ω t ) for some constants A 0 and ω . That is, the ambient temperature oscillates (for example night and day temperatures). a) Find the general solution. b) In the long term, will the initial conditions make much of a difference? Why or why not?

Respuesta :

Answer:

(a). The general solution is

[tex]x(t)=\dfrac{kA_{0}}{k^2+\omega^2}(k\cos(\omega t)+\omega\sin(\omega t))+ce^{-kt}[/tex]

(b). The initial condition does not affect the long term.

Explanation:

Given that,

The equation is

[tex]\dfrac{dx}{dt}=-k(x-A)[/tex]

Where, x = temperature

t = time

A = ambient temperature  

(a). We need to calculate the general solution

Using given differential equation,

[tex]\dfrac{dx}{dt}=-k(x-A)[/tex]...(I)

Where, [tex]A = A_{0}\cos(\omega t)[/tex]

Put the value of A in equation (I)

[tex]\dfrac{dx}{dt}=-k(x-A_{0}\cos(\omega t))[/tex]

[tex]\dfrac{dx}{dt}=-kx+kA_{0}\cos(\omega t)[/tex]

[tex]\dfrac{dx}{dt}+kx=kA_{0}\cos(\omega t)[/tex].....(II)

The integrating factor [tex]\mu(t)[/tex] is given by

[tex]\mu (t)=e^{\int{k dt}}[/tex]

[tex]\mu (t)=e^{kt}[/tex]

Now, multiplying the equation (II) by μ(t) and integrating,

[tex]e^{kt}x(t)=\int{k A_{0}e^{kt}\cos(\omega t)}dt+c[/tex]

Where, c= constant

[tex]e^{kt}x(t)=kA_{0}{\dfrac{e^{kt}}{k^2+\omega^2}(k\cos(\omega t)+\omega\sin(\omega t))}+c[/tex]

[tex]x(t)=\dfrac{kA_{0}}{k^2+\omega^2}(k\cos(\omega t)+\omega\sin(\omega t))+ce^{-kt}[/tex]....(III)

(b). We need to find the difference in the long term

Using equation (III)

[tex]x(t)=\dfrac{kA_{0}}{k^2+\omega^2}(k\cos(\omega t)+\omega\sin(\omega t))+ce^{-kt}[/tex]

At t = 0,

[tex]x(0)=\dfrac{k^2A_{0}}{k^2+\omega^2}+c[/tex]

[tex]c=x(0)-\dfrac{k^2A_{0}}{k^2+\omega^2}[/tex]

Now, put the value of c in equation (III)

[tex]x(t)=\dfrac{1}{k^2+\omega^2}{k\cos(\omega t)+\omega\sin(\omega t)}+x(0)-\dfrac{k^2A_{0}}{k^2+\omega^2}e^{-kt}[/tex]

Now, [tex]\lim_{t \to \infty} x(0) e^{-kt}=0[/tex]

For any x(0) ∈ R

So, the initial condition does not affect the long term.

Hence, (a). The general solution is

[tex]x(t)=\dfrac{kA_{0}}{k^2+\omega^2}(k\cos(\omega t)+\omega\sin(\omega t))+ce^{-kt}[/tex]

(b). The initial condition does not affect the long term.