What is the domain of the given function? LaTeX: {(3, –2), (6, 1), (–1, 4), (5, 9), (–4, 0)} ( 3 , – 2 ) , ( 6 , 1 ) , ( – 1 , 4 ) , ( 5 , 9 ) , ( – 4 , 0 ) Group of answer choices LaTeX: \lbrace x | x = –4, –2, –1, 0, 1, 3, 4, 5, 6, 9 \rbrace { x | x = – 4 , – 2 , – 1 , 0 , 1 , 3 , 4 , 5 , 6 , 9 } LaTeX: \lbrace y | y = –2, 0, 1, 4, 9\rbrace { y | y = – 2 , 0 , 1 , 4 , 9 } LaTeX: \lbrace x | x = –4, –1, 3, 5, 6\rbrace { x | x = – 4 , – 1 , 3 , 5 , 6 } LaTeX: \lbrace y | y = –4, –2, –1, 0, 1, 3, 4, 5, 6, 9 \rbrace

Respuesta :

Given:

[tex]\text{Function}=\{(3, -2), (6, 1), (-1, 4), (5, 9), (-4, 0)\}[/tex]

To find:

The domain of the given function.

Solution:

Domain is the set of input values or x-values.

In the given function, the x-coordinates of ordered pairs are 3, 6, -1, 5 and -4. So, domain is the set of these values in ascending order.

The set builder form of domain is

[tex]\text{Domain}=\{x|x=-4,-1,3,5,6\}[/tex]

Therefore, the correct option is C.

Answere=mc squared

Step-by-step explanation:

yes