Given:
[tex]10x>8(3x-2)-12[/tex]
To find:
The values of x.
Solution:
We have,
[tex]10x>8(3x-2)-12[/tex]
[tex]10x>8(3x)+8(-2)-12[/tex] (Distributive property)
[tex]10x>24x-16-12[/tex]
[tex]10x>24x-28[/tex] (Combining like terms)
Add 28 on both sides.
[tex]10x+28>24x[/tex]
Subtract 10x from both sides.
[tex]28>24x-10x[/tex]
[tex]28>14x[/tex]
Divide both sides by 14.
[tex]\dfrac{28}{14}>x[/tex]
[tex]2>x[/tex]
Therefore, the values of x are all real numbers less than 2, i.e., x<2 .