Answer:
JK = 7
Step-by-step explanation:
Point J is on line segment IK.
[tex]\therefore JK + IJ = IK\\
\therefore 2x-1 + 3x - 5 = 3x + 2\\
\therefore 5x - 6 = 3x + 2\\
\therefore 5x - 3x = 2 + 6\\
\therefore 2x = 8 \\ \therefore x = \frac{8}{2} \\ \therefore x = 4 \\ \\ JK = 2x - 1 = 2 \times 4 - 1 = 8 - 1 \\ \huge \red{ \boxed{JK = 7}}[/tex]