Determine the length of the segment with endpoints C(1, 4) and D(11, 28).

Answer:
26 units
Step-by-step explanation:
Given:
C(1, 4) and D(11, 28),
Required:
Length of segment CD
SOLUTION:
Use the distance formula, [tex] d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex], to find the distance between endpoints C and D.
Let,
[tex] C(1, 4) = (x_1, y_1) [/tex]
[tex] D(11, 28) = (x_2, y_2) [/tex]
[tex] CD = \sqrt{(11 - 1)^2 + (28 - 4)^2} [/tex]
[tex] CD = \sqrt{(10)^2 + (24)^2} [/tex]
[tex] CD = \sqrt{100 + 576} = \sqrt{676} [/tex]
[tex] CD = 26 [/tex]
Length of segment CD = 26 units