Given the graph below, find MN. Round to the nearest hundredth.

Answer:
[tex] MN = 5.39 [/tex] (nearest hundredth)
Step-by-step explanation:
Use the distance formula, [tex] d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex], to find the distance between M(-1, 2) and N(4, 0).
Let,
[tex] M(-1, 2) = (x_1, y_1) [/tex]
[tex] N(4, 0) = (x_2, y_2) [/tex]
Plug in the values into the distance formula stated above:
[tex] MN = \sqrt{(4 - (-1))^2 + (0 - 2)^2} [/tex]
[tex] MN = \sqrt{(5)^2 + (-2)^2} [/tex]
[tex] MN = \sqrt{25 + 4} = \sqrt{29} [/tex]
[tex] MN = 5.39 [/tex] (nearest hundredth)