andro21
contestada

Complete the table below using the Midpoint and Distance Formulas.
Given: Mis the midpoint of
AB
Vertical Line Segment
Coordinates of A(2,4)
Coordinates of B(2,-6)
Coordinates of M. (_______),(_______)

Length of AB _________

Complete the table below using the Midpoint and Distance Formulas Given Mis the midpoint of AB Vertical Line Segment Coordinates of A24 Coordinates of B26 Coord class=

Respuesta :

Answer:

Coordinates of M = (2, -1)

Length of AB = 10 units

Step-by-step explanation:

Coordinates of the midpoint (M) of the distance between A(2, 4) and B(2, -6)

[tex] M(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}) [/tex]

Let [tex] A(2, 4) = (x_1, y_1) [/tex]

[tex] B(2, -6) = (x_2, y_2) [/tex]

Thus:

[tex] M(\frac{2 + 2}{2}, \frac{4 +(-6)}{2}) [/tex]

[tex] M(\frac{4}{2}, \frac{-2}{2}) [/tex]

[tex] M(2, -1) [/tex]

Length of AB:

Distance between A(2, 4) and B(2, -6):

[tex] AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex]

Let,

[tex] A(2, 4) = (x_1, y_1) [/tex]

[tex] B(2, -6) = (x_2, y_2) [/tex]

[tex] AB = \sqrt{(2 - 2)^2 + (-6 - 4)^2} [/tex]

[tex] AB = \sqrt{(0)^2 + (-10)^2} [/tex]

[tex] AB = \sqrt{0 + 100} = \sqrt{100} [/tex]

[tex] AB = 10 [/tex]