Write an equation g(x) for the parent function f(x)=x^2 re-elected in the x-axis, stretched by a factor of 7, shifted left 5 units, and shifted down 2 units

Respuesta :

Answer:

The resulting equation is [tex]g(x) = 7\cdot (x+5)^{2}-2[/tex].

Step-by-step explanation:

[tex]g(x)[/tex] is obtained by making three operation on parent function [tex]f(x)[/tex], whose procedured is presented below:

Streching

[tex]f'(x) = k\cdot f(x)[/tex], where [tex]k > 0[/tex]

Horizontal shift

[tex]f''(x) = f'(x+r)[/tex], where [tex]r > 0[/tex] when [tex]f'[/tex] is translated leftwards (+x direction), otherwise it is translated rightwards (-x direction).

Vertical shift

[tex]g(x) = f''(x)+c[/tex], where [tex]c > 0[/tex] when [tex]f''[/tex] is translated upwards (+y direction), otherwise it is translated downwards. (-y direction)

If [tex]f(x) = x^{2}[/tex], then [tex]g(x)[/tex] is:

Stretching

[tex]f'(x) = 7\cdot x^{2}[/tex]

Horizontal shift

[tex]f''(x) = 7\cdot (x+5)^{2}[/tex]

Vertical shift

[tex]g(x) = 7\cdot (x+5)^{2}-2[/tex]

The resulting equation is [tex]g(x) = 7\cdot (x+5)^{2}-2[/tex].