The graph of the function f is shown. The domain of f is [0,50]. What is the range of g(x)=4f(x)?

Answer:
The range of [tex]g(x)[/tex] is [tex][0,7][/tex].
Step-by-step explanation:
We must remember that range of function [tex]f(x)[/tex] corresponds to the set of values of [tex]y[/tex] in the graph (+y direction). Given that [tex]g(x)[/tex] is a stretched version of [tex]f(x)[/tex], the range of [tex]g(x)[/tex] corresponds to the range of [tex]f(x)[/tex] multiplied by 4. Then,
[tex]Ran\{g(x)\} = 4\cdot Ran\{f(x)\}[/tex]
[tex]Ran\{g(x)\} = 4\cdot [0,1.75][/tex]
[tex]Ran\{g(x)\} = [0, 7][/tex]
The range of [tex]g(x)[/tex] is [tex][0,7][/tex].