Respuesta :

Given:

PQ has endpoints at P(-5, 4) and Q (7,-5).

To find:

The length of PQ.

Solution:

Distance formula:

[tex]D=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Using the distance formula, the distance between P(-5, 4) and Q (7,-5) is

[tex]PQ=\sqrt{(7-(-5))^2+(-5-4)^2}[/tex]

[tex]PQ=\sqrt{(7+5)^2+(-9)^2}[/tex]

[tex]PQ=\sqrt{(12)^2+(-9)^2}[/tex]

[tex]PQ=\sqrt{144+81}[/tex]

[tex]PQ=\sqrt{225}[/tex]

[tex]PQ=15[/tex]

Therefore, the length of PQ is 15 units.