Answer:
Option (B)
Step-by-step explanation:
From the graph attached,
Vertical asymptotes of the function are x = -2, 5
Horizontal asymptote is y = 0
Now we take each option,
Option (A),
F(x) = [tex]\frac{x(x-5)}{(x+2)}[/tex]
No horizontal asymptote
Vertical asymptote : x = -2
Option (B),
F(x) = [tex]\frac{x}{(x+2)(x-5)}[/tex]
Horizontal asymptotes : y = 0
Vertical asymptotes : x = 5, -2
Option (C),
F(x) = [tex]\frac{(x+2)(x-5)}{x}[/tex]
Vertical asymptote : x = 0
No horizontal asymptote.
Therefore, Function given in Option (B) matches the asymptotes given in the graph.
Option (B) represents the graph.