Respuesta :
Answer:
[tex] \boxed{\sf Volume \ of \ the \ cylindrical \ container = 6336 \ cm^3} [/tex]
Given:
Diameter (d) = 24 cm
Height (h) = 14 cm
To Find:
Volume of the cylindrical container (V)
Step-by-step explanation:
[tex] \boxed{ \bold{\sf Volume \ (V) = \pi \frac{ {d}^{2} }{4} h}}[/tex]
Substituting values of π, d & h in the equation:
[tex] \sf \implies V = \frac{22}{7} \times \frac{ {(24)}^{2} }{4} \times 14[/tex]
[tex] \sf \implies V = \frac{22}{ \cancel{7}} \times \frac{576}{4} \times 2 \times \cancel{7}[/tex]
[tex] \sf \implies V = 22 \times \frac{144 \times \cancel{4}}{ \cancel{4}} \times 2[/tex]
[tex] \sf \implies V = 22 \times 144 \times 2[/tex]
[tex] \sf \implies V = 22 \times 288[/tex]
[tex] \sf \implies V = 6336 \: {cm}^{3} [/tex]
Answer:
V =6333.45079
Step-by-step explanation:
The volume of a cylinder is
V = pi r^2 h
We know the diameter is 24
r = d/2 =24/2 = 12
V = pi*12^2 * 14
V =2016 pi
Letting pi = pi button
V =6333.45079