Respuesta :

Answer:

[tex] \boxed{\sf Volume \ of \ the \ cylindrical \ container = 6336 \ cm^3} [/tex]

Given:

Diameter (d) = 24 cm

Height (h) = 14 cm

To Find:

Volume of the cylindrical container (V)

Step-by-step explanation:

[tex] \boxed{ \bold{\sf Volume \ (V) = \pi \frac{ {d}^{2} }{4} h}}[/tex]

Substituting values of π, d & h in the equation:

[tex] \sf \implies V = \frac{22}{7} \times \frac{ {(24)}^{2} }{4} \times 14[/tex]

[tex] \sf \implies V = \frac{22}{ \cancel{7}} \times \frac{576}{4} \times 2 \times \cancel{7}[/tex]

[tex] \sf \implies V = 22 \times \frac{144 \times \cancel{4}}{ \cancel{4}} \times 2[/tex]

[tex] \sf \implies V = 22 \times 144 \times 2[/tex]

[tex] \sf \implies V = 22 \times 288[/tex]

[tex] \sf \implies V = 6336 \: {cm}^{3} [/tex]

Answer:

V =6333.45079

Step-by-step explanation:

The volume of a cylinder is

V = pi r^2 h

We know the diameter is 24

r = d/2 =24/2 = 12

V = pi*12^2 * 14

V =2016 pi

Letting pi = pi button

V =6333.45079